Quick Contact Form

Autologous Dendritic Cell Therapy for Cancer is available at ASCI.

Cancer represents one of the major causes of mortality worldwide. More than half of patients suffering from cancer succumb to their condition. The primary approaches to treating cancer are surgical resection followed by radiation therapy and chemotherapy. These treatments have resulted in significant benefits to patients with the majority of tumor types, and the clinical outcomes have become more satisfactory. It is recognized that multidisciplinary treatments should be used in cancer treatments, another option proposed for this is immunotherapy. The combination of the traditional methods of surgery, chemotherapy and radiotherapy with immunotherapy, is a new way for anti-cancer therapies to reduce the mortality of cancer patients. The dysfunction of the antigen-specific T cells required to kill the cancer leads to cancer cells being able to grow in cancer patients. Active and adoptive T cell immunotherapies generate T cells that can target cancer cells.

Dendritic cells (DCs) are immune cells that function as antigen-presenting cells. They are able to activate naive CD4+ T helper cells and unprimed CD8+ cytotoxic T lymphocytes. Active immunotherapy, represented by DC-based regimens, has been used to produce tumor-specific antigen-presenting cells and to generate cytotoxic T lymphocyte responses against cancer cells. DCs can capture antigens, process them, and present them with co-stimulation cytokines/messengers to initiate an immune response, like inducing primary T-cell responses.

Adoptive immunotherapy, as conducted at our Asian Stem Cell Institute, is a personalized therapy that uses a patient’s own anti-tumor immune cells to kill cancer cells and may be used to treat several types of cancer, and represents another therapeutic approach against cancer. To date, the adoptive immunotherapy approach is one of the most effective methods for using the body’s immune system to treat cancer. To be used clinically, protocols for the development of these functional DCs must be established for in-clinic use via defined, xenobiotic-free medium conditions.

The purpose of the present study is to determine the cellular immune response in terms of the delayed-type hyper-sensitivity (DTH) skin test and evaluate the subjective clinical outcome and safety of the regimen in cancer patients receiving a DC vaccine.

Vaccination against a single antigen is available using purified and synthetic products, but these have disadvantages because it is unknown which of the identified antigens have the potential to induce an effective antitumor immune response. This study uses unfractionated, autologous, tumor-derived antigens in the form oftumor cell lysates which circumvents this disadvantage.

Tumor lysates as addressed in this protocol, contain multiple known as well as unknown antigens that can be presented to T cells by both MHC class I- and class II-pathways. Therefore, lysate-loaded DCs are more likely to induce the more preferred polyclonal expansion of T cells, including MHC class II restricted T-helper cells. These have been recognized to play an important role in the activation of Cytotoxic T Lymphocytes (CTLs), probably the most important cells in effecting an antitumor immune response. The generation of CTL clones with multiple specificities may be an advantage in heterogeneous tumors and could also reduce the risk of tumor escape variants. Furthermore, lysate from the autologous tumor can be used independently of the HLA type of the patient. A drawback of unfractionated tumor antigens is the possibility of inducing an autoimmune reactivity to epitopes that are shared by normal tissues. However, in clinical trials using lysate or whole tumor cells as the source of antigen, no clinically relevant autoimmune responses have ever been detected.

Personalized dendritic cell vaccines for cancer, via adoptive immunotherapy, are successfully developed and autologously administered to patients coming to Asia, and more specifically, within the Philippines at the Asian Stem Cell Institute in Manila. The results of this case study of cancer and immunotherapy via pulsed dendritic cells, can serve as another example of safety for future cancer vaccine development.

Cancer Stem Cell Treatment

Dendritic Cell Therapy for Cancer:
MiR-29b antagonizes the pro-inflammatory tumor-promoting activity of multiple myeloma-educated dendritic cells. Leukemia. 2017 Nov 21;: Authors: Botta C, Cucè M, Pitari MR, Caracciolo D, Gullà A, Morelli E, Riillo C, Biamonte L, Cantafio MEG, Prabhala R, Mignogna C, Di Vito A, Altomare E, Amodio N, Di Martino MT, Correale P, Rossi M, Giordano A, Munshi NC, Tagliaferri P, Tassone P Abstract Dendritic cells (DCs) play a key role in regulating tumor immunity, tumor cell growth and drug resistance. We hypothesized that multiple myeloma (MM) cells might recruit and reprogram DCs to a tumor-permissive phenotype by changes within their miRNA network. By analyzing 6 different miRNA-profiling datasets, miR-29b was identified as the only miRNA upregulated in normal mature DCs and significantly downregulated in tumor associated DCs. This finding was validated in primary DCs co-cultured in vitro with MM cell lines and in primary bone marrow DCs from MM patients. In DCs co-cultured with MM cells, enforced expression of miR-29b counteracted pro-inflammatory pathways, including STAT3 and NF-kB, and cytokine/chemokine signaling networks which correlated with patients' adverse prognosis and development of bone disease. Moreover, miR-29b downregulated IL-23 in vitro and in the SCID-synth-hu in vivo model and antagonized a Th17 inflammatory response. All together, these effects translated into strong anti-proliferative activity and reduction of genomic instability of MM cells. Our study demonstrates that MM reprograms the DCs functional phenotype by downregulating miR-29b whose reconstitution impairs DCs ability to sustain MM cell growth and survival. These results underscore miR-29b as an innovative and attractive candidate for miRNA-based immune therapy of MM.Leukemia accepted article preview online, 21 November 2017. doi:10.1038/leu.2017.336. PMID: 29158557 [PubMed - as supplied by publisher]
Read more...