Quick Contact Form

Here is a streaming database from the NIH for your own Education and Research:
Related Articles Bone marrow mesenchymal stem cells regulate stemness of multiple myeloma cell lines via BTK signaling pathway. Leuk Res. 2017 Jun;57:20-26 Authors: Zhao P, Chen Y, Yue Z, Yuan Y, Wang X Abstract Bone marrow mesenchymal stem cells (BM-MSCs) are key components of bone marrow microenvironment. Although the importances of BM-MSCs activation in myeloma cells growth, development, progression, angiogenesis are well known, their role in the regulation of myeloma stemness is unclear. In this study, myeloma cell lines (LP-1, U266) were co-cultured with BM-MSCs, we found that BM-MSCs could up-regulate the expression of key stemness genes and proteins (OCT4, SOX2, NANOG) and increase clonogenicity. Similarly, the mechanisms underlying the BM-MSC activation of myeloma stemness remain unclear. Here, we found that PCI-32765, a Bruton tyrosine kinase (BTK) inhibitor, treatment significantly down- regulate expression of key stemness genes and proteins in vitro co-culture system. Together, our results revealed that BM-MSCs could increase myeloma stemness via activation of the BTK signal pathway. PMID: 28273548 [PubMed - indexed for MEDLINE]
Read more...
Related Articles In vivo and in vitro study of osteogenic potency of endothelin-1 on bone marrow-derived mesenchymal stem cells. Exp Cell Res. 2017 Aug 01;357(1):25-32 Authors: Hu LW, Wang X, Jiang XQ, Xu LQ, Pan HY Abstract Bone marrow-derived mesenchymal stem cells (BMSCs) are a major source of osteoblasts and are crucial for bone remolding and repair and thus they are widely used for tissue engineering applications. Tissue engineering in combination with gene therapy is considered as a promising approach in new bone regeneration. Endothelin-1(EDN-1)is produced by vascular endothelial cells which plays an important role during bone development. However, its role in BMSCs remains largely unknown. We established EDN-1 overexpressed BMSCs, proliferation ability and osteogenesis differentiation were detected respectively. Transduced BMSCs were then combined with CPC-scaffold to repair calvarial defects in rats to evaluate the in-vivo osteogenic potential of EDN-1. EDN-1 overexpressed BMSCs showed increased proliferation and significantly increased osteogenesis potential ability than vector transfected control. The in-vivo data also revealed more new bone formation with higher bone mineral density and number of trabeculae in EDN-1 overexpressed BMSCs. These findings have demonstrated the influence of EDN-1 on differentiation potential of BMSCs, which suggest that EDN-1 may be a new promising agent for bone tissue engineering. PMID: 28432001 [PubMed - indexed for MEDLINE]
Read more...
Related Articles Bone marrow mesenchymal stem cell-derived vascular endothelial growth factor attenuates cardiac apoptosis via regulation of cardiac miRNA-23a and miRNA-92a in a rat model of myocardial infarction. PLoS One. 2017;12(6):e0179972 Authors: Song YS, Joo HW, Park IH, Shen GY, Lee Y, Shin JH, Kim H, Kim KS Abstract Bone marrow-mesenchymal stem cell (BM-MSC) therapy improves the recovery of cardiac function after myocardial infarction (MI); however, the underlying molecular mechanisms are not completely understood. Recent studies have shown that microRNAs (miRNAs) modulate the pathophysiology of cardiovascular diseases. Here, we investigated the mechanisms underlying the effects of BM-MSC-derived paracrine factors and cardiac miRNAs on myocardial regeneration after MI. In our study, MI was induced by permanent ligation of the left anterior descending (LAD) coronary artery. BM-MSCs transplanted in infarcted rats significantly downregulated the expression of miRNA-23a and miRNA-92a and inhibited apoptosis in the myocardium. An in vitro experiment showed that supernatant from BM-MSCs cultured under hypoxia contained higher levels of vascular endothelial growth factor (VEGF) than that from BM-MSCs under normoxia. In addition, inhibition of miRNA-23a and miRNA-92a reduced cardiac apoptosis. Moreover, the VEGF-containing BM-MSC supernatant inhibited miRNA-23a and miRNA-92a expression and reduced apoptotic signaling in cardiomyocytes under hypoxia. These effects were inhibited when the supernatant was treated with neutralizing antibodies against VEGF. Our results indicate that the paracrine factor, VEGF, derived from transplanted BM-MSCs, regulated the expression of miRNAs such as miRNA-23a and miRNA-92a and exerted anti-apoptotic effects in cardiomyocytes after MI. PMID: 28662151 [PubMed - indexed for MEDLINE]
Read more...